Investigating the Backscatter of Marine Plastic Litter Using a C- and X-Band Ground Radar, during a Measurement Campaign in Deltares

Author:

Simpson Morgan David1ORCID,Marino Armando1,de Maagt Peter2,Gandini Erio2,de Fockert Anton3,Hunter Peter1,Spyrakos Evangelos1ORCID,Telfer Trevor1,Tyler Andrew1

Affiliation:

1. Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK

2. European Space Research and Technology Centre (ESA ESTEC), 2201 AZ Noordwijk, The Netherlands

3. Deltares, 2629 HV Delft, The Netherlands

Abstract

In recent years, marine plastic pollution has seen increased coverage in the public interest and research due to a greater understanding of the scale and impact of plastic pollution within the marine environment. Considering the hazard that plastic waste poses on the environment, marine life, and on humans, remote-sensing techniques could provide timely information on their detection and dynamics. The remote sensing of marine plastic is a relatively new field and research into the capabilities of radar for detecting and monitoring marine plastic pollution is generally limited, with several interactions and mechanisms being largely unknown. Here, we exploit the use of a C- and X-band radar to understand the capabilities of monitoring marine plastics. Our results show that backscattering differences in the C- and X-band between the reference water (called here as “clean”) and the test water filled with plastic can be detected in some conditions (based on statistical analysis). Overall, the results indicate that the X-band frequency performs significantly better than the C-band frequency, with X-band detecting significant differences in backscattering in 48/68 test cases compared with C-band detecting differences in 20/67 test cases. We also find that the difference in backscattering is dependent on the size and shape of the plastic object, as well as the wave conditions which the plastic is moving on. This study provides new insights on the radar capabilities for detecting marine plastic litter and new information which can be used in the planning of future missions and studies on the remote sensing of marine plastic pollution.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3