Accurate Discharge Estimation Based on River Widths of SWOT and Constrained At-Many-Stations Hydraulic Geometry

Author:

Du Bin1,Jin Taoyong2,Liu Dong34,Wang Youkun35,Wu Xuequn1

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China

3. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

4. Earthquake Administration of Yunnan Province, Kunming 650224, China

5. Kunming Surveying and Mapping Institute, Kunming 650051, China

Abstract

River discharge monitoring is an important component of the hydrology objectives of Surface Water and Ocean Topography mission (SWOT). River discharge can be estimated Solely using river widths and At Many-stations Hydraulic Geometry (AMHG), but the accuracy is low due to the parameters of At a-station Hydraulic Geometry (AHG) given by AMHG deviate from the truth. In view of this, a Constrained At-Many-Stations Hydraulic Geometry (CAMHG) is proposed to optimize AHG parameters. The performance of CAMHG is verified in three reaches of the Yangtze River using river widths derived from SWOT. After using CAMHG, the relative root mean square error (RRMSE) of estimated discharge reduce 100.1% to 24.4%, 1137.1% to 49.9% and 48.6% to 45.5% for Hankou, Shashi and Luoshan respectively. In addition, CAMHG can also weaken the accuracy difference of estimated discharge in dry and wet seasons benefited from its more reliable AHG parameters. Thus, the proposed CAMHG can dramatically improves the accuracy of discharge estimations and it is meaningful for the discharge calculation after SWOT data release.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province for Distinguished Young Scholars

Special Fund of Hubei Luojia Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3