Author:
Liu Xintian,Deng Xuhui,He Yao,Zheng Xinxin,Zeng Guojian
Abstract
With the increasing environmental concerns, plug-in electric vehicles will eventually become the main transportation tools in future smart cities. As a key component and the main power source, lithium-ion batteries have been an important object of research studies. In order to efficiently control electric vehicle powertrains, the state of charge (SOC) of lithium-ion batteries must be accurately estimated by the battery management system. This paper aims to provide a more accurate dynamic SOC estimation method for lithium-ion batteries. A dynamic Thevenin model with variable parameters affected by the temperature and SOC is established to model the battery. An unscented Kalman particle filter (UPF) algorithm is proposed based on the unscented Kalman filter (UKF) algorithm and the particle filter (PF) algorithm to generate nonlinear particle filter according to the advantages and disadvantages of various commonly used filtering algorithms. The simulation results show that the unscented Kalman particle filter algorithm based on the dynamic Thevenin model can predict the SOC in real time and it also has strong robustness against noises.
Funder
National Natural Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献