Affiliation:
1. Engineering Faculty, Campus San Juan del Río, Universidad Autónoma de Querétaro, Av. Río Moctezuma 249, San Juan del Río 76807, Querétaro, Mexico
Abstract
Nowadays, the use of renewable, green/eco-friendly technologies is attracting the attention of researchers, with a view to overcoming recent challenges that must be faced to guarantee the availability of Electric Vehicles (EVs). Therefore, this work proposes a methodology based on Genetic Algorithms (GA) and multivariate regression for estimating and modeling the State of Charge (SOC) in Electric Vehicles. Indeed, the proposal considers the continuous monitoring of six load-related variables that have an influence on the SOC (State of Charge), specifically, the vehicle acceleration, vehicle speed, battery bank temperature, motor RPM, motor current, and motor temperature. Thus, these measurements are evaluated in a structure comprised of a Genetic Algorithm and a multivariate regression model in order to find those relevant signals that better model the State of Charge, as well as the Root Mean Square Error (RMSE). The proposed approach is validated under a real set of data acquired from a self-assembly Electric Vehicle, and the obtained results show a maximum accuracy of approximately 95.5%; thus, this proposed method can be applied as a reliable diagnostic tool in the automotive industry.
Funder
Investigación vinculada a la atención de problemas nacionales 2021-FIN
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献