Possibilities of Measuring and Detecting Defects of Forged Parts in Die Hot-Forging Processes

Author:

Hawryluk Marek1ORCID,Polak Sławomir1,Rychlik Marcin12ORCID,Dudkiewicz Łukasz13ORCID,Borowski Jacek4ORCID,Suliga Maciej5ORCID

Affiliation:

1. Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27 Street, 50-370 Wroclaw, Poland

2. Kuźnia Jawor, S.A, Kuziennicza 4 Street, 59-400 Jawor, Poland

3. Schraner Polska Sp. z o. o., Lotnicza 19G Street, 99-100 Leczyca, Poland

4. Łukasiewicz Research Network—Poznań Institute of Technology, Jana Pawła II 14 Street, 61-139 Poznań, Poland

5. Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Czestochowa, Poland

Abstract

This paper presents research results in the field of industrial die forging, mostly related to the use of advanced measuring techniques and tools, numerical simulations, and other IT tools and methods for a geometrical analysis of the forged items as well as detection of forging flaws and their prevention, and optimization of the hot-forging processes. The results of the conducted investigations were divided into three main areas. The first area refers to the application of, e.g., optical scanners and programs related to their operation, data analysis, including the construction of virtual gauges, measurements of selected geometrical features of both the manufactured forgings and their physical and virtual models, as well as an analysis of the durability of the forging tools based on the proprietary reverse scanning method. The second area presents the results of measurements and analyses performed with the use of finite element modeling and by means of some special functions in the calculation packages, such as contact, flow lines, trap, or fold, for the detection of forging defects and an analysis of the force parameters. In turn, the third area presents a combination of different methods of measurement and analysis, both FEM and scanning, as well as other IT methods (physical modeling, image analysis, etc.) for the analysis of the geometry and defects of the forgings. The presented results point to the great potential of these types of tools and techniques in forging industry applications as they significantly shorten the time and increase the accuracy of the measurement, as well as providing a lot of valuable information, physical variables, and technological parameters that are difficult or impossible to determine either analytically or through experimental means. The use and development of these techniques and methods are fully justified, both in the aspect of science and the increased effectiveness and efficiency of production.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3