Impact of Multi-Scattered LiDAR Returns in Fog

Author:

Hevisov David1ORCID,Liemert André1,Reitzle Dominik1,Kienle Alwin1

Affiliation:

1. Institute for Laser Technologies in Medicine and Metrology at the University of Ulm (ILM), D-89081 Ulm, Germany

Abstract

In the context of autonomous driving, the augmentation of existing data through simulations provides an elegant solution to the challenge of capturing the full range of adverse weather conditions in training datasets. However, existing physics-based augmentation models typically rely on single scattering approximations to predict light propagation under unfavorable conditions, such as fog. This can prevent the reproduction of important signal characteristics encountered in a real-world environment. Consequently, in this work, Monte Carlo simulations are employed to assess the relevance of multiple-scattered light to the detected LiDAR signal in different types of fog, with scattering phase functions calculated from Mie theory considering real particle size distributions. Bidirectional path tracing is used within the self-developed GPU-accelerated Monte Carlo software to compensate for the unfavorable photon statistics associated with the limited detection aperture of the LiDAR geometry. To validate the Monte Carlo software, an analytical solution of the radiative transfer equation for the time-resolved radiance in terms of scattering orders is derived, thereby providing an explicit representation of the double-scattered contributions. The results of the simulations demonstrate that the shape of the detected signal can be significantly impacted by multiple-scattered light, depending on LiDAR geometry and visibility. In particular, double-scattered light can dominate the overall signal at low visibilities. This indicates that considering higher scattering orders is essential for improving AI-based perception models.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3