Evaluation of DNA Methylation Array for Glioma Tumor Profiling and Description of a Novel Epi-Signature to Distinguish IDH1/IDH2 Mutant and Wild-Type Tumors

Author:

Schenkel Laila C.,Mathew Joseph,Hirte HalORCID,Provias John,Paré Guillaume,Chong Michael,Grafodatskaya Daria,McCready ElizabethORCID

Abstract

Molecular biomarkers, such as IDH1/IDH2 mutations and 1p19q co-deletion, are included in the histopathological and clinical criteria currently used to diagnose and classify gliomas. IDH1/IDH2 mutation is a common feature of gliomas and is associated with a glioma-CpG island methylator phenotype (CIMP). Aberrant genomic methylation patterns can also be used to extrapolate information about copy number variation in a tumor. This project’s goal was to assess the feasibility of DNA methylation array for the simultaneous detection of glioma biomarkers as a more effective testing strategy compared to existing single analyte tests. Methods: Whole-genome methylation array (WGMA) testing was performed using 48 glioma DNA samples to detect methylation aberrations and chromosomal gains and losses. The analyzed samples include 39 tumors in the discovery cohort and 9 tumors in the replication cohort. Methylation profiles for each sample were correlated with IDH1 p.R132G mutation, immunohistochemistry (IHC), and previous 1p19q clinical testing to assess the sensitivity and specificity of the WGMA assay for the detection of these variants. Results: We developed a DNA methylation signature to specifically distinguish a IDH1/IDH2 mutant tumor from normal samples. This signature is composed of 11 CpG sites that were significantly hypermethylated in the IDH1/IDH2 mutant group. Copy number analysis using WGMA data was able to identify five of five positive samples for 1p19q co-deletion and was concordant for all negative samples. Conclusions: The DNA methylation signature presented here has the potential to refine the utility of WGMA to predict IDH1/IDH2 mutation status of gliomas, thus improving diagnostic yield and efficiency of laboratory testing compared to single analyte IDH1/IDH2 or 1p19q tests.

Funder

Ontario Molecular Pathology Research Network

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3