Genome-Wide Methylation Patterns in Primary Uveal Melanoma: Development of MethylSig-UM, an Epigenomic Prognostic Signature to Improve Patient Stratification

Author:

Lalonde Emilie12,Li Dong1,Ewens Kathryn1,Shields Carol L.3ORCID,Ganguly Arupa2

Affiliation:

1. Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada

3. Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19144, USA

Abstract

Despite studies highlighting the prognostic utility of DNA methylation in primary uveal melanoma (pUM), it has not been translated into a clinically useful tool. We sought to define a methylation signature to identify newly diagnosed individuals at high risk for developing metastasis. Methylation profiling was performed on 41 patients with pUM with stage T2–T4 and at least three years of follow-up using the Illumina Infinium HumanMethylation450K BeadChip (N = 24) and the EPIC BeadChip (N = 17). Findings were validated in the TCGA cohort with known metastatic outcome (N = 69). Differentially methylated probes were identified in patients who developed metastasis. Unsupervised consensus clustering revealed three epigenomic subtypes associated with metastasis. To identify a prognostic signature, recursive feature elimination and random forest models were utilized within repeated cross-validation iterations. The 250 most commonly selected probes comprised the final signature, named MethylSig-UM. MethylSig-UM could distinguish individuals with pUM at diagnosis who develop future metastasis with an area under the curve of ~81% in the independent validation cohort, and remained significant in Cox proportional hazard models when combined with clinical features and established genomic biomarkers. Altered expression of immune-modulating genes were detected in MethylSig-UM positive tumors, providing clues for pUM resistance to immunotherapy. The MethylSig-UM model is available to enable additional validation in larger cohort sizes including T1 tumors.

Publisher

MDPI AG

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3