Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System

Author:

Michez AdrienORCID,Lejeune Philippe,Bauwens Sébastien,Herinaina Andriamandroso,Blaise Yannick,Castro Muñoz Eloy,Lebeau Frédéric,Bindelle Jérôme

Abstract

The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools that can provide relevant 3D information, such as sward height (3D structure), or even describe the physical condition of pastures through the use of spectral information. This study aimed to evaluate the potential of UAS to characterize a pasture’s sward height and above-ground biomass at a very fine spatial scale. The pasture height provided by UAS products showed good agreement (R2 = 0.62) with a reference terrestrial light detection and ranging (LiDAR) dataset. We tested the ability of UAS imagery to model pasture biomass based on three different combinations: UAS sward height, UAS sward multispectral reflectance/vegetation indices, and a combination of both UAS data types. The mixed approach combining the UAS sward height and spectral data performed the best (adj. R2 = 0.49). This approach reached a quality comparable to that of more conventional non-destructive on-field pasture biomass monitoring tools. As all of the UAS variables used in the model fitting process were extracted from spatial information (raster data), a high spatial resolution map of pasture biomass was derived based on the best fitted model. A sward height differences map was also derived from UAS-based sward height maps before and after grazing. Our results demonstrate the potential of UAS imagery as a tool for precision grazing study applications. The UAS approach to height and biomass monitoring was revealed to be a potential alternative to the widely used but time-consuming field approaches. While reaching a similar level of accuracy to the conventional field sampling approach, the UAS approach provides wall-to-wall pasture characterization through very high spatial resolution maps, opening up a new area of research for precision grazing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3