Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain

Author:

Tan Kangye1ORCID,Tian Yihui2,Xu Fang3,Li Chunsheng1

Affiliation:

1. School of Business, Macau University of Science and Technology, Macao 999078, China

2. Faculty of Business, City University of Macau, Macao 999078, China

3. School of National Safety and Emergency Management, Beijing Normal University at Zhuhai, Zhuhai 519087, China

Abstract

In the context of carbon neutralization, the electric vehicle and energy storage market is growing rapidly. As a result, battery recycling is an important work with the consideration of the advent of battery retirement and resource constraints, environmental factors, resource regional constraints, and price factors. Based on the theoretical research of intelligent algorithm and mathematical models, an integer programming model of urban power battery reverse supply chain scheduling was established with the goal of the highest customer satisfaction and the least total cost of logistics and distribution, to study the influence of the resources and operation status of a built city recycling center and dismantling center on the power battery reverse supply chain. The model includes vehicle load, customer demand point satisfaction range, and service capacity constraints. This study collected regional image data, conducted image analysis, and further designed an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) optimization algorithm suitable to solve the global optimization problem by introducing the improvement strategy of convergence rate, particle search, and the traditional elite individual retention. The results verified the practicability of the model, the global optimization ability of the algorithm to solve the problem, and the operation speed through comparing the results obtained from the basic algorithm. A reasonable comprehensive solution for the location and path optimization of the urban recycling center was also obtained. Multi-objective optimization was carried out in vehicle scheduling, facility construction, and customer satisfaction construction. The basic algorithm and integrated optimization software were compared. We found that the model and the scheme provided by the algorithm can significantly reduce the operation cost of the enterprise. This research provided new insights for enterprises to effectively utilize resources and optimize the reverse supply chain scheduling of an urban power battery.

Funder

Higher Education Fund of the Macao SAR Government

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3