Anisotropy-Based Adaptive Polynomial Chaos Method for Hybrid Uncertainty Quantification and Reliability-Based Design Optimization of Structural-Acoustic System

Author:

Yin Shengwen1,Gao Yuan1,Zhu Xiaohan1,Wang Zhonggang1

Affiliation:

1. Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410082, China

Abstract

The evaluation of objective functions and component reliability in the optimisation of structural-acoustic systems with random and interval variables is computationally expensive, especially when strong nonlinearity exhibits between the response and input variables. To reduce the computational cost and improve the computational efficiency, a novel anisotropy-based adaptive polynomial chaos (ABAPC) expansion method was developed in this study. In ABAPC, the anisotropy-based polynomial chaos expansion, namely the retained order of polynomial chaos expansion (PCE) differs from each variable, is used to construct the initial surrogate model instead of first-order polynomial chaos expansion in conventional methods. Then, an anisotropy-based adaptive basis growth strategy was developed to reduce the estimation of the coefficients of the polynomial chaos expansion method and increase its computational efficiency. Finally, to solve problems with probabilistic and interval parameters, an adaptive basis truncation strategy was introduced and implemented. Using the ABAPC method, the computational cost of reliability-based design optimisation for structural-acoustic systems can be efficiently reduced. The effectiveness of the proposed method were demonstrated by solving two numerical examples and optimisation problems of a structural-acoustic system.

Funder

National Key R&D Program of China

Central South University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3