Reliability-Based Design With the Mixture of Random and Interval Variables

Author:

Du Xiaoping1,Sudjianto Agus2,Huang Beiqing1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Missouri—Rolla, 1870 Miner Circle, Rolla, MO 65409-4494

2. Risk Management, Bank of America, Charlotte, NC 28255

Abstract

In reliability-based design (RBD), uncertainties are usually treated stochastically, and nondeterministic variables are assumed to follow certain probability distributions. However, in many practical engineering applications, distributions of some random variables may not be precisely known or uncertainties may not be appropriately represented with distributions. The possible values of those nondeterministic variables are often only known to lie within specified intervals without precise distribution information. In this paper, we attempt to address this issue by proposing a RBD method to deal with the uncertain variables characterized by the mixture of probability distributions and intervals. The reliability is considered under the condition of the worst case combination of interval variables. The computational demand of RBD with the mixture of random and interval variables may increase dramatically due to the need for identifying the worst case interval variables. To alleviate the computational burden, a sequential single-loop procedure is employed to replace the computationally expensive double-loop procedure when the worst case scenario is applied directly. With the proposed method, the RBD is conducted within a series of cycles of deterministic optimization and reliability analysis. The optimization model in each cycle is built based on the most probable point under the worst case combination of the interval variables obtained from the reliability analysis in the previous cycle. Since the optimization is decoupled from the probabilistic analysis, the computational amount for reliability analysis is decreased to the minimum extent. The proposed method is demonstrated with two examples.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference42 articles.

1. Taguchi on Robust Technology Development

2. Structural Reliability Analysis and Prediction

3. Zang, T. A., Hemsch, M. J., Hilburger, M. W., Kenny, S. P., Luckring, J. M., Maghami, P., Padula, S. L., and Stroud, W. J., 2002, “Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles,” NASA/TM–2002–211462.

4. Physics-Based Reliability Models;Mahadevan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3