Broad Embedded Logistic Regression Classifier for Prediction of Air Pressure Systems Failure

Author:

Muideen Adegoke A.12,Lee Carman Ka Man13ORCID,Chan Jeffery1,Pang Brandon1,Alaka Hafiz2

Affiliation:

1. Centre For Advances in Reliability and Safety (CAiRS), Hong Kong, China

2. Big Data Technologies and Innovation Laboratory, University of Hertfordshire, Hatfield AL10 9AB, UK

3. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

In recent years, the latest maintenance modelling techniques that adopt the data-based method, such as machine learning (ML), have brought about a broad range of useful applications. One of the major challenges in the automotive industry is the early detection of component failure for quick response, proper action, and minimizing maintenance costs. A vital component of an automobile system is an air pressure system (APS). Failure of APS without adequate and quick responses may lead to high maintenance costs, loss of lives, and component damages. This paper addresses classification problem where we detect whether a fault does or does not belong to APS. If a failure occurs in APS, it is classified as positive class; otherwise, it is classified as negative class. Hence, in this paper, we propose broad embedded logistic regression (BELR). The proposed BELR is applied to predict APS failure. It combines a broad learning system (BLS) and logistic regression (LogR) classifier as a fusion model. The proposed approach capitalizes on the strength of BLS and LogR for a better APS failure prediction. Additionally, we employ the BLS’s feature-mapped nodes for extracting features from the input data. Additionally, we use the enhancement nodes of the BLS to enhance the features from feature-mapped nodes. Hence, we have features that can assist LogR for better classification performances, even when the data is skewed to the positive class or negative class. Furthermore, to prevent the curse of dimensionality, a common problem with high-dimensional data sets, we utilize principal component analysis (PCA) to reduce the data dimension. We validate the proposed BELR using the APS data set and compare the results with the other robust machine learning classifiers. The commonly used evaluation metrics, namely Recall, Precision, an F1-score, to evaluate the model performance. From the results, we validate that performance of the proposed BELR.

Funder

ITC-InnoHK Clusters-Innovation

Technology Commission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3