Metric Dimensions of Bicyclic Graphs

Author:

Khan Asad1ORCID,Haidar Ghulam2,Abbas Naeem2,Khan Murad Ul Islam2ORCID,Niazi Azmat Ullah Khan3ORCID,Khan Asad Ul Islam4ORCID

Affiliation:

1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

2. Department of Mathematics and Statistics, The University of Haripur, Haripur 22620, Pakistan

3. Department of Mathematics and Statistics, The University of Lahore, Sargodha 40100, Pakistan

4. Economics Department, Ibn Haldun University, Istanbul 34480, Turkey

Abstract

The distance d(va,vb) between two vertices of a simple connected graph G is the length of the shortest path between va and vb. Vertices va,vb of G are considered to be resolved by a vertex v if d(va,v)≠d(vb,v). An ordered set W={v1,v2,v3,…,vs}⊆V(G) is said to be a resolving set for G, if for any va,vb∈V(G),∃vi∈W∋d(va,vi)≠d(vb,vi). The representation of vertex v with respect to W is denoted by r(v|W) and is an s-vector(s-tuple) (d(v,v1),d(v,v2),d(v,v3),…,d(v,vs)). Using representation r(v|W), we can say that W is a resolving set if, for any two vertices va,vb∈V(G), we have r(va|W)≠r(vb|W). A minimal resolving set is termed a metric basis for G. The cardinality of the metric basis set is called the metric dimension of G, represented by dim(G). In this article, we study the metric dimension of two types of bicyclic graphs. The obtained results prove that they have constant metric dimension.

Funder

Guangzhou Government

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Leaves of trees;Slater;Congr. Numer.,1975

2. Dominating and reference sets in a graph;Slater;J. Math. Phys. Sci.,1988

3. On the metric dimension of a graph;Melter;Ars Comb.,1976

4. Resolvability in graphs and the metric dimension of a graph;Chartrand;Discret. Appl. Math.,2000

5. A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs;Klein;Eur. J. Pure Appl. Math.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3