Deep Reinforcement Learning Heterogeneous Channels for Poisson Multiple Access

Author:

Zhang Xu1,Chen Pingping1ORCID,Yu Genjian2,Wang Shaohao1

Affiliation:

1. Department of Electronic Information, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China

2. College of Computer and Control Engineering, Minjiang University, Fuzhou 350108, China

Abstract

This paper proposes a medium access control (MAC) protocol based on deep reinforcement learning (DRL), i.e., multi-channel transmit deep-reinforcement learning multi-channel access (MCT-DLMA) in heterogeneous wireless networks (HetNets). The work concerns practical unsaturated channel traffic that arrives following a Poisson distribution instead of saturated traffic that arrives before.By learning the access mode from historical information, MCT-DLMA can well fill the spectrum holes in the communication of existing users. In particular, it enables the cognitive user to multi-channel transmit at a time, e.g., via the multi-carrier technology. Thus, the spectrum resource can be fully utilized, and the sum throughput of the HetNet is maximized. Simulation results show that the proposed algorithm provides a much higher throughput than the conventional schemes, i.e., the whittle index policy and the DLMA algorithms for both the saturated and unsaturated traffic, respectively. In addition, it also achieves a near-optimal result in dynamic environments with changing primary users, which proves the enhanced robustness to time-varying communications.

Funder

Natural Science Fund of China

Natural Science Fund of of Fujian Province

Industry-University Research Project of Education Department Fujian Province 2020

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3