Towards a Broad-Persistent Advising Approach for Deep Interactive Reinforcement Learning in Robotic Environments

Author:

Nguyen Hung Son1ORCID,Cruz Francisco23ORCID,Dazeley Richard1

Affiliation:

1. School of Information Technology, Deakin University, Geelong 3220, Australia

2. School of Computer Science and Engineering, University of New South Wales, Sydney 2052, Australia

3. Escuela de Ingeniería, Universidad Central de Chile, Santiago 8330601, Chile

Abstract

Deep Reinforcement Learning (DeepRL) methods have been widely used in robotics to learn about the environment and acquire behaviours autonomously. Deep Interactive Reinforcement 2 Learning (DeepIRL) includes interactive feedback from an external trainer or expert giving advice to help learners choose actions to speed up the learning process. However, current research has been limited to interactions that offer actionable advice to only the current state of the agent. Additionally, the information is discarded by the agent after a single use, which causes a duplicate process at the same state for a revisit. In this paper, we present Broad-Persistent Advising (BPA), an approach that retains and reuses the processed information. It not only helps trainers give more general advice relevant to similar states instead of only the current state, but also allows the agent to speed up the learning process. We tested the proposed approach in two continuous robotic scenarios, namely a cart pole balancing task and a simulated robot navigation task. The results demonstrated that the agent’s learning speed increased, as evidenced by the rising reward points of up to 37%, while maintaining the number of interactions required for the trainer, in comparison to the DeepIRL approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3