A Model for Infrastructure Detection along Highways Based on Remote Sensing Images from UAVs

Author:

Jiang Xian1ORCID,Cui Qing1,Wang Chongguo1,Wang Fan1ORCID,Zhao Yingxiang1,Hou Yongjie1,Zhuang Rujun1,Mei Yunfei1ORCID,Shi Gang1

Affiliation:

1. School of Information Science and Engineering, Xinjiang University, Urumqi 830017, China

Abstract

Infrastructure along the highway refers to various facilities and equipment: bridges, culverts, traffic signs, guardrails, etc. New technologies such as artificial intelligence, big data, and the Internet of Things are driving the digital transformation of highway infrastructure towards the future goal of intelligent roads. Drones have emerged as a promising application area of intelligent technology in this field. They can help achieve fast and precise detection, classification, and localization of infrastructure along highways, which can significantly enhance efficiency and ease the burden on road management staff. As the infrastructure along the road is exposed to the outdoors for a long time, it is easily damaged and obscured by objects such as sand and rocks; on the other hand, based on the high resolution of the images taken by Unmanned Aerial Vehicles (UAVs), the variable shooting angles, complex backgrounds, and high percentage of small targets mean the direct use of existing target detection models cannot meet the requirements of practical applications in industry. In addition, there is a lack of large and comprehensive image datasets of infrastructure along highways from UAVs. Based on this, a multi-classification infrastructure detection model combining multi-scale feature fusion and an attention mechanism is proposed. In this paper, the backbone network of the CenterNet model is replaced with ResNet50, and the improved feature fusion part enables the model to generate fine-grained features to improve the detection of small targets; furthermore, the attention mechanism is added to make the network focus more on valuable regions with higher attention weights. As there is no publicly available dataset of infrastructure along highways captured by UAVs, we filter and manually annotate the laboratory-captured highway dataset to generate a highway infrastructure dataset. The experimental results show that the model has a mean Average Precision (mAP) of 86.7%, an improvement of 3.1 percentage points over the baseline model, and the new model performs significantly better than other detection models overall.

Funder

Natural Science Foundation of China

Third Xinjiang Scientific Expedition Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shallow Feature Enhanced Regression Model for UAV Traffic Object Detection;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

2. UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios;Sensors;2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3