Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images

Author:

Gallo IgnazioORCID,Rehman Anwar UrORCID,Dehkordi Ramin HeidarianORCID,Landro NicolaORCID,La Grassa RiccardoORCID,Boschetti MircoORCID

Abstract

Weeds are a crucial threat to agriculture, and in order to preserve crop productivity, spreading agrochemicals is a common practice with a potential negative impact on the environment. Methods that can support intelligent application are needed. Therefore, identification and mapping is a critical step in performing site-specific weed management. Unmanned aerial vehicle (UAV) data streams are considered the best for weed detection due to the high resolution and flexibility of data acquisition and the spatial explicit dimensions of imagery. However, with the existence of unstructured crop conditions and the high biological variation of weeds, it remains a difficult challenge to generate accurate weed recognition and detection models. Two critical barriers to tackling this challenge are related to (1) a lack of case-specific, large, and comprehensive weed UAV image datasets for the crop of interest, (2) defining the most appropriate computer vision (CV) weed detection models to assess the operationality of detection approaches in real case conditions. Deep Learning (DL) algorithms, appropriately trained to deal with the real case complexity of UAV data in agriculture, can provide valid alternative solutions with respect to standard CV approaches for an accurate weed recognition model. In this framework, this paper first introduces a new weed and crop dataset named Chicory Plant (CP) and then tests state-of-the-art DL algorithms for object detection. A total of 12,113 bounding box annotations were generated to identify weed targets (Mercurialis annua) from more than 3000 RGB images of chicory plantations, collected using a UAV system at various stages of crop and weed growth. Deep weed object detection was conducted by testing the most recent You Only Look Once version 7 (YOLOv7) on both the CP and publicly available datasets (Lincoln beet (LB)), for which a previous version of YOLO was used to map weeds and crops. The YOLOv7 results obtained for the CP dataset were encouraging, outperforming the other YOLO variants by producing value metrics of 56.6%, 62.1%, and 61.3% for the mAP@0.5 scores, recall, and precision, respectively. Furthermore, the YOLOv7 model applied to the LB dataset surpassed the existing published results by increasing the mAP@0.5 scores from 51% to 61%, 67.5% to 74.1%, and 34.6% to 48% for the total mAP, mAP for weeds, and mAP for sugar beets, respectively. This study illustrates the potential of the YOLOv7 model for weed detection but remarks on the fundamental needs of large-scale, annotated weed datasets to develop and evaluate models in real-case field circumstances.

Funder

the Italian Ministry of University and Research (MUR) under the PON Agrifood Program

E-crops

Transizione industriale e resilienza delle Società post-Covid19

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3