A Heterogeneity-Enhancement and Homogeneity-Restraint Network (HEHRNet) for Change Detection from Very High-Resolution Remote Sensing Imagery

Author:

Wang Biao1ORCID,He Ao1,Wang Chunlin2,Xu Xiao3,Yang Hui4,Wu Yanlan5

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

2. Anhui & Huaihe River Institute of Hydraulic Research, Hefei 230088, China

3. Department of Art and Design, Jining Polytechnic, Jining 272007, China

4. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

5. School of Artificial Intelligence, Anhui University, Hefei 230601, China

Abstract

Change detection (CD), a crucial technique for observing ground-level changes over time, is a challenging research area in the remote sensing field. Deep learning methods for CD have made significant progress in remote sensing intelligent interpretation. However, with very high-resolution (VHR) satellite imagery, technical challenges such as insufficient mining of shallow-level features, complex transmission of deep-level features, and difficulties in identifying change information features have led to severe fragmentation and low completeness issues of CD targets. To reduce costs and enhance efficiency in monitoring tasks such as changes in national resources, it is crucial to promote the practical implementation of automatic change detection technology. Therefore, we propose a deep learning approach utilizing heterogeneity enhancement and homogeneity restraint for CD. In addition to comprehensively extracting multilevel features from multitemporal images, we introduce a cosine similarity-based module and a module for progressive fusion enhancement of multilevel features to enhance deep feature extraction and the change information utilization within feature associations. This ensures that the change target completeness and the independence between change targets can be further improved. Comparative experiments with six CD models on two benchmark datasets demonstrate that the proposed approach outperforms conventional CD models in various metrics, including recall (0.6868, 0.6756), precision (0.7050, 0.7570), F1 score (0.6958, 0.7140), and MIoU (0.7013, 0.7000), on the SECOND and the HRSCD datasets, respectively. According to the core principles of change detection, the proposed deep learning network effectively enhances the completeness of target vectors and the separation of individual targets in change detection with VHR remote sensing images, which has significant research and practical value.

Funder

National Natural Science Foundation of China

International Science and Technology Cooperation Special

Anhui Provincial Natural Science Foundation

Natural Resources Science and Technology Program of Anhui Province

Shandong Province Humanities and Social Science Research Project

Hefei Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3