Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring

Author:

Zhang YangjianORCID,Wang LiORCID,Zhou QuanORCID,Tang Feng,Zhang Bo,Huang Ni,Nath BiswajitORCID

Abstract

Forest is one of the most important surface coverage types. Monitoring its dynamics is of great significance in global ecological environment monitoring and global carbon circulation research. Forest monitoring based on Landsat time-series stacks is a research hotspot, and continuous change detection is a novel approach to real-time change detection. Here, we present an approach, continuous change detection and classification-spectral trajectory breakpoint recognition, running on Google Earth Engine (GEE) for monitoring forest disturbance and forest long-term trends. We used this approach to monitor forest disturbance and the change in forest cover rate from 1987 to 2020 in Nanning City, China. The high-resolution Google Earth images are collected for the validation of forest disturbance. The classification accuracy of forest, non-forest, and water maps by using the optima classification features was 95.16%. For disturbance detection, the accuracy of our map was 86.4%, significantly higher than 60% of the global forest change product. Our approach can successfully generate high-accuracy classification maps at any time and detect the forest disturbance time on a monthly scale, accurately capturing the thinning cycle of plantations, which earlier studies failed to estimate. All the research work is integrated into GEE to promote the use of the approach on a global scale.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3