Abstract
Forest is one of the most important surface coverage types. Monitoring its dynamics is of great significance in global ecological environment monitoring and global carbon circulation research. Forest monitoring based on Landsat time-series stacks is a research hotspot, and continuous change detection is a novel approach to real-time change detection. Here, we present an approach, continuous change detection and classification-spectral trajectory breakpoint recognition, running on Google Earth Engine (GEE) for monitoring forest disturbance and forest long-term trends. We used this approach to monitor forest disturbance and the change in forest cover rate from 1987 to 2020 in Nanning City, China. The high-resolution Google Earth images are collected for the validation of forest disturbance. The classification accuracy of forest, non-forest, and water maps by using the optima classification features was 95.16%. For disturbance detection, the accuracy of our map was 86.4%, significantly higher than 60% of the global forest change product. Our approach can successfully generate high-accuracy classification maps at any time and detect the forest disturbance time on a monthly scale, accurately capturing the thinning cycle of plantations, which earlier studies failed to estimate. All the research work is integrated into GEE to promote the use of the approach on a global scale.
Funder
National Key Research and Development Project of China
National Natural Science Foundation of China
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献