Polysaccharide-Based Packaging Functionalized with Inorganic Nanoparticles for Food Preservation

Author:

Anaya-Esparza Luis MiguelORCID,Villagrán-de la Mora ZuamíORCID,Rodríguez-Barajas Noé,Ruvalcaba-Gómez José MartínORCID,Iñiguez-Muñoz Laura Elena,Maytorena-Verdugo Claudia Ivette,Montalvo-González EfigeniaORCID,Pérez-Larios AlejandroORCID

Abstract

Functionalization of polysaccharide-based packaging incorporating inorganic nanoparticles for food preservation is an active research area. This review summarizes the use of polysaccharide-based materials functionalized with inorganic nanoparticles (TiO2, ZnO, Ag, SiO2, Al2O3, Fe2O3, Zr, MgO, halloysite, and montmorillonite) to develop hybrid packaging for fruit, vegetables, meat (lamb, minced, pork, and poultry), mushrooms, cheese, eggs, and Ginkgo biloba seeds preservation. Their effects on quality parameters and shelf life are also discussed. In general, treated fruit, vegetables, mushrooms, and G. biloba seeds markedly increased their shelf life without significant changes in their sensory attributes, associated with a slowdown effect in the ripening process (respiration rate) due to the excellent gas exchange and barrier properties that effectively prevented dehydration, weight loss, enzymatic browning, microbial infections by spoilage and foodborne pathogenic bacteria, and mildew apparition in comparison with uncoated or polysaccharide-coated samples. Similarly, hybrid packaging showed protective effects to preserve meat products, cheese, and eggs by preventing microbial infections and lipid peroxidation, extending the food product’s shelf life without changes in their sensory attributes. According to the evidence, polysaccharide-hybrid packaging can preserve the quality parameters of different food products. However, further studies are needed to guarantee the safe implementation of these organic–inorganic packaging materials in the food industry.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3