Ultrasound-Assisted Process to Increase the Hydrophobicity of Cellulose from Oat Hulls by Surface Modification with Vegetable Oils

Author:

Gil-Giraldo Gina A.1,Mantovan Janaina2,Marim Beatriz M.3,Kishima João O. F.3ORCID,Beluci Natália C. L.3ORCID,Mali Suzana3ORCID

Affiliation:

1. Faculty of Health Sciences, University Institution Colegio Mayor de Antioquia (COLMAYOR), Medellín 050036, Colombia

2. Department of Chemistry and Biochemistry, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, SP, Brazil

3. Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina 86051-990, PR, Brazil

Abstract

Cellulose obtained from oat hulls by bleaching with peracetic acid was modified, employing an ultrasound method that resulted in an esterification reaction with different vegetable oils (soybean, sunflower, and coconut) to produce modified cellulose (MC) with increased hydrophobicity. MC samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy, and their wettability and oil and water absorption capacities. FTIR indicated that the reaction occurred with all oils, which was observed by forming a new band associated with ester carbonyl groups at 1747 cm−1. The modification did not affect the crystalline structure or surface morphology of the cellulose. MC samples modified with all oil sources showed a 6 to 9-fold decrease in water absorption capacity, a 3-fold increase in oil absorption capacity, and a higher affinity for nonpolar solvents. The modified samples adsorbed lower amounts of water at a slower rate. Different oil sources did not affect the main properties of MC. The ultrasonication-assisted process was not only effective in modifying cellulose by esterification with vegetable oils but was also an eco-friendly and simple strategy that does not require toxic reagents, providing reassurance of its sustainability.

Funder

Capes

FINEP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3