Performance Comparison of Machine Learning Models for Annual Precipitation Prediction Using Different Decomposition Methods

Author:

Song ChaoORCID,Chen XiaohongORCID

Abstract

It has become increasingly difficult in recent years to predict precipitation scientifically and accurately due to the dual effects of human activities and climatic conditions. This paper focuses on four aspects to improve precipitation prediction accuracy. Five decomposition methods (time-varying filter-based empirical mode decomposition (TVF-EMD), robust empirical mode decomposition (REMD), complementary ensemble empirical mode decomposition (CEEMD), wavelet transform (WT), and extreme-point symmetric mode decomposition (ESMD) combined with the Elman neural network (ENN)) are used to construct five prediction models, i.e., TVF-EMD-ENN, REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN. The variance contribution rate (VCR) and Pearson correlation coefficient (PCC) are utilized to compare the performances of the five decomposition methods. The wavelet transform coherence (WTC) is used to determine the reason for the poor prediction performance of machine learning algorithms in individual years and the relationship with climate indicators. A secondary decomposition of the TVF-EMD is used to improve the prediction accuracy of the models. The proposed methods are used to predict the annual precipitation in Guangzhou. The subcomponents obtained from the TVF-EMD are the most stable among the four decomposition methods, and the North Atlantic Oscillation (NAO) index, the Nino 3.4 index, and sunspots have a smaller influence on the first subcomponent (Sc-1) than the other subcomponents. The TVF-EMD-ENN model has the best prediction performance and outperforms traditional machine learning models. The secondary decomposition of the Sc-1 of the TVF-EMD model significantly improves the prediction accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3