Monthly runoff prediction using the VMD-LSTM-Transformer hybrid model: a case study of the Miyun Reservoir in Beijing

Author:

Guo Shaolei1,Wen Yihao1,Zhang Xianqi123,Chen Haiyang1

Affiliation:

1. a Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China

3. c Technology Research Center of Water Conservancy and Marine Traffic Engineering, Zhengzhou 450046, Henan Province, China

Abstract

Abstract Accurate runoff prediction is of great significance for flood prevention and mitigation, agricultural irrigation, and reservoir scheduling in watersheds. To address the strong non-linear and non-stationary characteristics of runoff series, a hybrid model of monthly runoff prediction, variational mode decomposition (VMD)–long short-term memory (LSTM)–Transformer, is proposed. Firstly, VMD is used to decompose the runoff series into multiple modal components, and the sample entropy of each modal component is calculated and divided into high-frequency and low-frequency components. The LSTM model is then used to predict the high-frequency components and the transformer to predict the low-frequency components. Finally, the prediction results are summed to obtain the final prediction results. The Mann–Kendall trend test method is used to analyze the runoff characteristics of the Miyun Reservoir, and the constructed VMD–LSTM–Transformer model is used to forecast the runoff of the Miyun Reservoir. The prediction results are compared and evaluated with those of VMD–LSTM, VMD–Transformer, empirical mode decomposition (EMD)–LSTM–Transformer, and empirical mode decomposition (EMD)–LSTM models. The results show that the Nash–Sutcliffe efficiency coefficient (NSE) value of this model is 0.976, mean absolute error (MAE) is 0.206 × 107 m3, mean absolute percentage error (MAPE) is 0.381%, and root mean squared error (RMSE) is 0.411 × 107 m3, all of which are better than other models, indicating that the VMD–LSTM–Transformer model has higher prediction accuracy and can be applied to runoff prediction in the actual study area.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

North China University of Water Resources and Electric Power Innovation Ability Improvement Project for Postgraduates

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3