A Lidar-Based 3-D Photosynthetically Active Radiation Model Reveals the Spatiotemporal Variations of Forest Sunlit and Shaded Leaves

Author:

Tian Shihao,Zheng Guang,Eitel Jan U.,Zhang Qian

Abstract

Accurately identifying sunlit and shaded leaves using process-based ecological models can improve the simulation accuracy of forest photosynthetic rates and potential carbon sequestration capacity. However, it is still challenging to characterize their three dimensional (3-D) spatiotemporal distributions due to the complex structure. In this study, we developed a light detection and ranging (lidar)-based approach to map the spatiotemporal distribution patterns of photosynthetically active radiation (PAR) and sunlit and shaded leaves within forest canopies. By using both terrestrial laser scanning (TLS) and unmanned aerial vehicle-based lidar system (UAV-LS), we analyzed the influences of different scanning geometries and associated point densities on the separation of sunlit and shaded leaves. Moreover, we further investigated the effects of woody materials and penumbra sizes on identifying sunlit and shaded leaves by separating the foliage and woody materials and estimating the penumbras of sunlit leaves. Our results showed that: (1) The proposed lidar-based PAR model could well capture the variations of field-based pyranometer measurements using fused point data by combining UAV-LS and TLS data (mean R-square = 0.88, mean root mean square error (RMSE) = 155.5 μmol·m−2·s−1, p < 0.01). The separate UAV-LS and TLS-based fractions of sunlit leaves were averagely overestimated by 34.3% and 21.6% when compared to the fused point data due to their different coverages and comprehensiveness. (2) The woody materials showed different effects on sunlit leaf fraction estimations for forest overstory and understory due to the variations of solar zenith angle and tree spatial distribution patterns. The most noticeable differences (i.e., −36.4%) between the sunlit leaf fraction before and after removing woody materials were observed around noon, with a small solar zenith angle and low-density forest stand. (3) The penumbra effects were seen to increase the sunlit leaf fraction in the lower canopy by introducing direct solar radiation, and it should be considered when using 3-D structural information from lidar to identify sunlit and shaded leaves.

Funder

the Key Research and Development Programs for Global Change and Adaptation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3