Deep Learning Application to Clinical Decision Support System in Sleep Stage Classification

Author:

Kim Dongyoung,Lee JeonggunORCID,Woo YunheeORCID,Jeong Jaemin,Kim ChulhoORCID,Kim Dong-KyuORCID

Abstract

Recently, deep learning for automated sleep stage classification has been introduced with promising results. However, as many challenges impede their routine application, automatic sleep scoring algorithms are not widely used. Typically, polysomnography (PSG) uses multiple channels for higher accuracy; however, the disadvantages include a requirement for a patient to stay one or more nights in the lab wearing uncomfortable sensors and wires. To avoid the inconvenience caused by the multiple channels, we aimed to develop a deep learning model for use in clinical decision support systems (CDSSs) and combined convolutional neural networks and a transformer for the supervised learning of three classes of sleep stages only with single-channel EEG data (C4-M1). The data for training, validation, and test were derived from 1590, 341, and 343 polysomnography recordings, respectively. The developed model yielded an overall accuracy of 91.4%, comparable with that of human experts. Based on the severity of obstructive sleep apnea, the model’s accuracy was 94.3%, 91.9%, 91.9%, and 90.6% in normal, mild, moderate, and severe cases, respectively. Our deep learning model enables accurate and rapid delineation of three-class sleep staging and could be useful as a CDSS for application in real-world clinical practice.

Funder

Korea Health Information Service

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference42 articles.

1. Obstructive sleep apnea: Diagnosis, epidemiology, and economics;Kapur;Respir. Care,2010

2. Sleep-disordered breathing and cardiovascular disorders;Budhiraja;Respir. Care,2010

3. Serious motor vehicle crashes: the cost of untreated sleep apnoea

4. Excessive Daytime Sleepiness Increases the Risk of Motor Vehicle Crash in Obstructive Sleep Apnea

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3