Advancing Sleep Stage Classification with EEG Signal Analysis: LSTM Optimization Using Puffer Fish Algorithm and Explainable AI

Author:

Rao Vemula Srinivasa1,Vemula Maruthi2,Kotapati Ghamya3,Kiran Vatsavai Lokesh Sai4,Jayaprada Gavarraju Lakshmi Naga5,Vatambeti Ramesh6

Affiliation:

1. Software Test Analyst Senior, FIS Management Services, Durham, North Carolina 27703-8589, USA

2. Student, North Carolina School of Science and Mathematics, Durham, North Carolina 27705, USA

3. Department of AI & ML, School of Computing, Mohan Babu University, Tirupati 517102, India

4. Department of Information Technology, SRKR Engineering College, Bhimavaram 534204, India

5. Department of Computer Science and Engineering, Malla Reddy College of Engineering and Technology, Hyderabad 500100, India

6. School of Computer Science and Engineering, VIT-AP University, Vijayawada 522237, India

Abstract

In this study, we introduce SleepXAI, a Convolutional Neural Network-Conditional Random Field (CNN-CRF) technique for automatic multi-class sleep stage classification from polysomnography data. SleepXAI enhances classification accuracy while ensuring explainability by highlighting crucial signal segments. Leveraging Long Short-Term Memory (LSTM) networks, it effectively categorizes epileptic EEG signals. Continuous Wavelet Transform (CWT) optimizes signal quality by analyzing eigenvalue characteristics and removing noise. Eigenvalues, which are scalar values indicating the scaling effect on eigenvectors during linear transformations, are used to ensure clean and representative EEG signals. The Puffer Fish Optimization Algorithm fine-tunes LSTM parameters, achieving heightened accuracy by reducing trainable parameters. Evaluation on the Sleep-EDF-20, Sleep-EDF-78, and SHHS datasets shows promising results, with regular accuracy ranging from 85% to 89%. The proposed LSTM-PFOA algorithm demonstrates efficacy for autonomous sleep categorization network development, promising improved sleep stage classification accuracy and facilitating comprehensive health monitoring practices.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3