Abstract
The application of high-voltage discharge plasma for water pollutant decomposition and the synthesis of nanoparticles under a high-pressure argon gas environment (~4 MPa) was demonstrated. The experiments were carried out in a batch-type system at room temperature with a pulsed DC power supply (15.4 to 18.6 kV) as a discharge plasma source. The results showed that the electrode materials, the pulsed repetition rates, the applied number of pulses, and the applied voltages had a significant effect on the degradation reactions of organic compounds. Furthermore, carbon solid materials from glycine decomposition were generated during the high-voltage discharge plasma treatment under high-pressure conditions, while Raman spectra and the HRTEM images indicated that titanium dioxide with a brookite structure and titanium carbide nanoparticles were also formed under these conditions. It was concluded that this process is applicable in practice and may lead to advanced organic compound decomposition and metal-based nanoparticle synthesis technologies.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献