Creating a Robust SoC Estimation Algorithm Based on LSTM Units and Trained with Synthetic Data

Author:

Azkue Markel12ORCID,Miguel Eduardo1,Martinez-Laserna Egoitz1ORCID,Oca Laura2ORCID,Iraola Unai2ORCID

Affiliation:

1. Electrical Energy Storage, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate-Mondragon, Spain

2. Electronics and Computing Department, Faculty of Engineering, Mondragon Unibertsitatea, 20500 Arrasate-Mondragón, Spain

Abstract

Creating SoC algorithms for Li-ion batteries based on neural networks requires a large amount of training data, since it is necessary to test the batteries under different conditions so that the algorithm learns the relationship between the different inputs and the output. Obtaining such data through laboratory tests is costly and time consuming; therefore, in this article, a neural network has been trained with data generated synthetically using electrochemical models. These models allow us to obtain relevant data related to different conditions at a minimum cost over a short period of time. By means of the different training rounds carried out using these data, it has been studied how the different hyperparameters affect the behaviour of the algorithm, creating a robust and accurate algorithm. To adapt this approach to new battery references or chemistries, transfer learning techniques can be employed.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3