Numerical Simulation and ANN Prediction of Crack Problems within Corrosion Defects

Author:

Ren Meng1,Zhang Yanmei2,Fan Mu1,Xiao Zhongmin3

Affiliation:

1. State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210010, China

2. College of Aerospace Engineering, Chong Qing University, Chongqing 400044, China

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639673, Singapore

Abstract

Buried pipelines are widely used, so it is necessary to analyze and study their fracture characteristics. The locations of corrosion defects on the pipe are more susceptible to fracture under the influence of internal pressure generated during material transportation. In the open literature, a large number of studies have been conducted on the failure pressure or residual strength of corroded pipelines. On this basis, this study conducts a fracture analysis on buried pipelines with corrosion areas under seismic loads. The extended finite element method was used to model and analyze the buried pipeline under seismic load, and it was found that the stress value at the crack tip was maximum when the circumferential angle of the crack was near 5° in the corrosion area. The changes in the stress field at the crack tip in the corrosion zone of the pipeline under different loads were compared. Based on the BP algorithm, a neural network model that can predict the stress field at the pipe crack tip is established. The neural network is trained using numerical model data, and a prediction model with a prediction error of less than 10% is constructed. The crack tip characteristics were further studied using the BP neural network model, and it was determined that the tip stress fluctuation range is between 450 MPa and 500 MPa. The neural network model is optimized based on the GA algorithm, which solves the problem of convergence difficulties and improves the prediction accuracy. According to the prediction results, it is found that when the internal pressure increases, the corrosion depth will significantly affect the crack tip stress field. The maximum error of the optimized neural network is 5.32%. The calculation data of the optimized neural network model were compared with the calculation data of other models, and it was determined that GA-BPNN has better adaptability in this research problem.

Funder

Key Laboratory of New Technology for Construction of Cities in Mountain Aera, Ministry of Education, Chongqing University

Publisher

MDPI AG

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3