Predictive Analysis of Crack Growth in Bearings via Neural Networks

Author:

Singh Manpreet1,Gopaluni Dharma Teja1,Shoor Sumit1,Vashishtha Govind23ORCID,Chauhan Sumika2ORCID

Affiliation:

1. School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India

2. Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, Poland

3. Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun 248002, India

Abstract

Machine learning (ML) and artificial intelligence (AI) have emerged as the most advanced technologies today for solving issues as well as assessing and forecasting occurrences. The use of AI and ML in various organizations seeks to capitalize on the benefits of vast amounts of data based on scientific approaches, notably machine learning, which may identify patterns of decision-making and minimize the need for human intervention. The purpose of this research work is to develop a suitable neural network model, which is a component of AI and ML, to assess and forecast crack propagation in a bearing with a seeded crack. The bearing was continually run for many hours, and data were retrieved at time intervals that might be utilized to forecast crack growth. The variables root mean square (RMS), crest factor, signal-to-noise ratio (SNR), skewness, kurtosis, and Shannon entropy were collected from the continuously running bearing and utilized as input parameters, with the total crack area and crack width regarded as output parameters. Finally, utilizing several methodologies of the Neural Network tool in MATLAB, a realistic ANN model was trained to predict the crack area and crack width. It was observed that the ANN model performed admirably in predicting data with a better degree of accuracy. Through analysis, it was observed that the SNR was the most relevant parameter in anticipating data in bearing crack propagation, with an accuracy rate of 99.2% when evaluated as a single parameter, whereas in multiple parameter analysis, a combination of kurtosis and Shannon entropy gave a 99.39% accuracy rate.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3