Experimental Study on the Crack Concrete Repaired via Enzyme-Induced Calcium Carbonate Precipitation (EICP)

Author:

Li Gang1,Yan Deqiang1,Liu Jia1ORCID,Yang Peidong1,Zhang Jinli2ORCID

Affiliation:

1. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

A low-carbon and environmentally friendly EICP method for repairing concrete cracks is presented to prolong the service life of concrete. In this study, we took concrete as the research object and quartz sand as the filling medium and employed the EICP injection method to repair concrete cracks. The internal repair effect of EICP on concrete cracks was evaluated with a combination of ultrasonic and compressive strength tests. The concrete repair mechanism of EICP was identified with a combination of EDS, XRD, and SEM tests. The results indicate that with an increase in the fracture depth, the ultrasonic sound time of the crack specimen increased gradually, and the ultrasonic wave transit time value of the crack specimen decreased significantly after EICP repair. After repair, the compressive strength rose. The highest compressive-strength recovery rate of a 0.3 mm wide specimen is 98.41%. The calcium carbonate crystal formed using EICP is vaterite. The probability density function model of the Laplace distribution was constructed, which showed good applicability and consistency in the ultrasonic sound time and compressive strength measured via experiments. The formed calcium carbonate crystals can be tightly and evenly attached to the cracks with the EICP injection repair method, resulting in a better repair effect.

Funder

Natural Science Basic Research Program of Shaanxi Province

Scientific Research Program Funded by Education Department of Shaanxi Provincial Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3