Binary Ebola Optimization Search Algorithm for Feature Selection and Classification Problems

Author:

Akinola Olatunji,Oyelade Olaide N.ORCID,Ezugwu Absalom E.ORCID

Abstract

In the past decade, the extraction of valuable information from online biomedical datasets has exponentially increased due to the evolution of data processing devices and the utilization of machine learning capabilities to find useful information in these datasets. However, these datasets present a variety of features, dimensionalities, shapes, noise, and heterogeneity. As a result, deriving relevant information remains a problem, since multiple features bottleneck the classification process. Despite their adaptability, current state-of-the-art classifiers have failed to address the problem, giving rise to the exploration of binary optimization algorithms. This study proposes a novel approach to binarizing the Ebola optimization search algorithm. The binary Ebola search optimization algorithm (BEOSA) uses two newly formulated S-shape and V-shape transfer functions to investigate mutations of the infected population in the exploitation and exploration phases, respectively. A model is designed to show a representation of the binary search space and the mapping of the algorithm from the continuous space to the discrete space. Mathematical models are formulated to demonstrate the fitness and cost functions used for evaluating the algorithm. Using 22 benchmark datasets consisting of low, medium and high dimensional data, we exhaustively experimented with the proposed BEOSA method and six other recent similar feature selection methods. The experimental results show that the BEOSA and its variant BIEOSA were highly competitive with different state-of-the-art binary optimization algorithms. A comparative analysis of the classification accuracy obtained for eight binary optimizers showed that BEOSA performed competitively compared to other methods on nine datasets. Evaluation reports on all methods revealed that BEOSA was the top performer, obtaining the best values on eight datasets and eight fitness and cost functions. Computation for the average number of features selected showed that BEOSA outperformed other methods on 11 datasets when population sizes of 75 and 100 were used. Findings from the study revealed that BEOSA is effective in handling the challenge of feature selection in high-dimensional datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3