Enhancing heart disease detection and classification using fuzzy logic and metaheuristic algorithms in a blockchain assisted healthcare environment

Author:

Mohananthini N.1,Rajeshkumar K.2,Ananth C.2

Affiliation:

1. Department of Electrical and Electronics Engineering, Muthayammal Engineering College, Rasipuram, India

2. Department of Computer and Information Science, Annamalai University, Annamalainagar, India

Abstract

Heart disease (HD) is a leading cause of mortality worldwide, emphasizing the need for accurate and efficient detection and classification methods. Recently, Blockchain (BC) provides seamless and secure sharing of heart disease data amongst healthcare providers, specialists, and researchers. This allows collaborative efforts, data exchange, and integration of diverse datasets, leading to a more comprehensive analysis and accurate detection of heart diseases. BC provides a decentralized and tamper-proof platform for storing sensitive patient data related to heart disease. This ensures the integrity and security of the data, reducing the risk of unauthorized access or data manipulation. Therefore, this study presents a new blockchain-assisted heart disease detection and classification model with feature selection with optimal fuzzy logic (BHDDC-FSOFL) technique. The presented BHDDC-FSOFL technique uses BC technology to store healthcare data securely. In addition, the disease detection module encompasses the design of biogeography teaching and learning-based optimization (BTLBO) algorithm for feature selection (FS) procedure. Moreover, an adaptive neuro-fuzzy inference system (ANFIS) classifier can be exploited for HD detection and classification. Furthermore, the ebola search optimization (ESO) algorithm is used for the parameter tuning of the ANFIS classifier. The integration of ANFIS classifier enables the modeling of uncertainty and imprecision in HD data, while metaheuristic algorithms aid in optimizing the classification process. Additionally, the utilization of BC technology ensures secure and transparent storage and sharing of healthcare data. To demonstrate the enhanced HD classification results of the BHDDC-FSOFL technique, a detailed experimental analysis was made on the HD dataset. The extensive result analysis pointed out the improved performance of the BHDDC-FSOFL technique compared to recent approaches in terms of different measures. Therefore, the proposed model offers a reliable and privacy-enhancing solution for healthcare providers and patients in a BC-assisted healthcare environment.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3