A Many-Objective Marine Predators Algorithm for Solving Many-Objective Optimal Power Flow Problem

Author:

Khunkitti SiroteORCID,Siritaratiwat Apirat,Premrudeepreechacharn Suttichai

Abstract

Since the increases in electricity demand, environmental awareness, and power reliability requirements, solutions of single-objective optimal power flow (OPF) and multi-objective OPF (MOOPF) (two or three objectives) problems are inadequate for modern power system management and operation. Solutions to the many-objective OPF (more than three objectives) problems are necessary to meet modern power-system requirements, and an efficient optimization algorithm is needed to solve the problems. This paper presents a many-objective marine predators’ algorithm (MaMPA) for solving single-objective OPF (SOOPF), multi-objective OPF (MOOPF), and many-objective OPF (MaOPF) problems as this algorithm has been widely used to solve other different problems with many successes, except for MaOPF problems. The marine predators’ algorithm (MPA) itself cannot solve multi- or many-objective optimization problems, so the non-dominated sorting, crowding mechanism, and leader mechanism are applied to the MPA in this work. The considered objective functions include cost, emission, transmission loss, and voltage stability index (VSI), and the IEEE 30- and 118-bus systems are tested to evaluate the algorithm performance. The results of the SOOPF problem provided by MaMPA are found to be better than various algorithms in the literature where the provided cost of MaMPA is more than that of the compared algorithms for more than 1000 USD/h in the IEEE 118-bus system. The statistical results of MaMPA are investigated and express very high consistency with a very low standard deviation. The Pareto fronts and best-compromised solutions generated by MaMPA for MOOPF and MaOPF problems are compared with various algorithms based on the hypervolume indicator and show superiority over the compared algorithms, especially in the large system. The best-compromised solution of MaMPA for the MaOPF problem is found to be greater than the compared algorithms around 4.30 to 85.23% for the considered objectives in the IEEE 118-bus system.

Funder

Chiang Mai University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3