Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems

Author:

de Jesus Ianca M. S.1ORCID,Tolfo Thaís M.1,Godoy Ruben B.1ORCID,Pelzl Matheus de C.1,Acosta Beatriz de S.1,Soares Rafael L. R.1

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, Brazil

Abstract

Implantable medical devices (IMDs) necessitate a consistent energy supply, commonly sourced from an embedded battery. However, given the finite lifespan of batteries, periodic replacement becomes imperative. This paper addresses the challenge by introducing a wireless power transfer system designed specifically for implantable medical devices (IMDs). It begins with a detailed analysis of the four conventional topologies. Following this, the paper provides a thorough explanation for choosing the PS topology, highlighting its advantages and suitability for the intended application. The primary parallel capacitance necessitates power from current sources; thus, a Class-E amplifier was implemented. Additionally, the selected circuit was engineered to deliver 1 W at the biocompatible resonance frequency of 13.56 MHz. The delineation of the resonance parameters hinges on multifaceted solutions, encompassing bifurcation-free operation and the attainment of peak efficiency. To ensure the feasibility of the proposed solution, a Differential-Evolution-based algorithm was employed. The results obtained from simulation-based evaluations indicated that the system achieved an efficiency exceeding 86%. This efficiency level was maintained even in the face of frequency fluctuations and variations in the coupling between the coils, thereby ensuring stable operational performance. This aligns seamlessly with the specified application prerequisites, guaranteeing a feasible and reliable operation.

Funder

FNDE/MEC/PET—Tutorial Education Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3