Abstract
The mismatch of geometric parameters in a nanotomography system bears a significant impact on the reconstructed images. Moreover, projection image noise is increased due to limitations of the X-ray power source. The accuracy of the existing self-calibration method, which uses only the grayscale information of the projected image, is easily affected by noise and leads to reduced accuracy. This paper proposes a geometric parameter self-calibration method based on feature matching of mirror projection images. Firstly, the fast extraction and matching feature points in the mirror projection image are performed by speeded-up robust features (SURF). The feature triangle is then designed according to the stable position of the system’s rotation axis to further filter the feature points. In turn, the influence of the mismatched points on the calculation accuracy is reduced. Finally, the straight line where the rotation axis is located is fitted by the midpoint coordinates of the filtered feature points, thereby realizing geometric parameter calibration of the system. Simulation and actual data from the experimental results show that the proposed method effectively realizes the calibration of geometric parameters, and the blurring and ghosting caused by geometric artifacts are corrected. Compared with existing methods, the image clarity can be improved by up to 14.4%.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献