Quantifying Moss Response to Metal Contaminant Exposure Using Laser-Induced Fluorescence

Author:

Truax KellyORCID,Dulai HenriettaORCID,Misra Anupam,Kuhne WendyORCID,Fuleky Peter

Abstract

Tracing sources of contamination, including potentially toxic elements (PTEs), has historically been achieved through sampling and analysis of soil or biota, which are labor-intensive, costly, and destructive methods. Thus, availability of a non-destructive in situ remote sensing method for monitoring metals deposited in biota is of great interest. Laser-induced fluorescence (LIF) is an emerging spectroscopic and imaging technique that documents changes in molecular energy level in plants as a biological response to metal contamination. For a proof-of-concept study and preliminary experiment, moss was selected for experimentation due to its long history of use in tracing atmospheric deposition of PTEs. Consecutive treatments of copper chloride (CuCl2) were administered to three moss samples, simulating wet deposition every 48 h over 10 days until reaching cumulative Cu concentrations of 2.690 to 8.075 μmol/cm2. While these Cu amounts are above environmentally relevant concentrations, they allowed the best conditions for testing and fine tuning of the imaging and data processing protocols presented in this paper. Moss fluorescence was induced using both 532 nm green and 355 nm UV lasers. A CMOS camera captured images of the LIF response, and red–green–blue (RGB) decimal code values were extracted for each pixel in the images, and pixel densities of color channels from treated and untreated moss samples were compared. Results show a shift towards lower color decimal codes corresponding to increased Cu concentration. We developed and contrasted multiple quantitative analyses of color distributions and demonstrated that LIF shows great promise for remote sensing of Cu accumulation in moss at μmol/cm2 levels. Though currently, the method would be limited to highly toxic sites, it illustrates the possibility and provides a framework for development of higher-sensitivity methods to detect nmol/cm2 that are viable for urban contamination level monitoring.

Funder

Department of Energy National Nuclear Security Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3