Applications of LIF to Document Natural Variability of Chlorophyll Content and Cu Uptake in Moss

Author:

Truax Kelly1ORCID,Dulai Henrietta1ORCID,Misra Anupam1,Kuhne Wendy2ORCID,Smith Celia3ORCID,Bongolan-Aquino Ciara1

Affiliation:

1. Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

2. Savannah River National Laboratory, Aiken, SC 29831, USA

3. School of Life Science, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

Abstract

Chlorophyll has long been used as a natural indicator of plant health and photosynthetic efficiency. Laser-induced fluorescence (LIF) is an emerging technique for understanding broad spectrum organic processes and has more recently been used to monitor chlorophyll response in plants. Previous work has focused on developing a LIF technique for imaging moss mats to identify metal contamination with the current focus shifting toward application to moss fronds and aiding sample collection for chemical analysis. Two laser systems (CoCoBi a Nd:YGa pulsed laser system and Chl-SL with two blue continuous semiconductor diodes) were used to collect images of moss fronds exposed to increasing levels of Cu (1, 10, and 100 nmol/cm2) using a CMOS camera. The best methods for the preprocessing of images were conducted before the analysis of fluorescence signatures were compared to a control. The Chl-SL system performed better than the CoCoBi, with dynamic time warping (DTW) proving the most effective for image analysis. Manual thresholding to remove lower decimal code values improved the data distributions and proved whether using one or two fronds in an image was more advantageous. A higher DTW difference from the control correlated to lower chlorophyll a/b ratios and a higher metal content, indicating that LIF, with the aid of image processing, can be an effective technique for identifying Cu contamination shortly after an event.

Funder

Department of Energy National Nuclear Security Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3