Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0

Author:

Martinho Vítor João Pereira DominguesORCID,Cunha Carlos Augusto da SilvaORCID,Pato Maria Lúcia,Costa Paulo Jorge Lourenço,Sánchez-Carreira María CarmenORCID,Georgantzís NikolaosORCID,Rodrigues Raimundo NonatoORCID,Coronado Freddy

Abstract

Climate change and global warming interconnected with the new contexts created by the COVID-19 pandemic and the Russia-Ukraine conflict have brought serious challenges to national and international organizations, especially in terms of food security and agricultural planning. These circumstances are of particular concern due to the impacts on food chains and the resulting disruptions in supply and price changes. The digital agricultural transition in Era 4.0 can play a decisive role in dealing with these new agendas, where drones and sensors, big data, the internet of things and machine learning all have their inputs. In this context, the main objective of this study is to highlight insights from the literature on the relationships between machine learning and food security and their contributions to agricultural planning in the context of Agriculture 4.0. For this, a systematic review was carried out based on information from text and bibliographic data. The proposed objectives and methodologies represent an innovative approach, namely, the consideration of bibliometric evaluation as a support for a focused literature review related to the topics addressed here. The results of this research show the importance of the digital transition in agriculture to support better policy and planning design and address imbalances in food chains and agricultural markets. New technologies in Era 4.0 and their application through Climate-Smart Agriculture approaches are crucial for sustainable businesses (economically, socially and environmentally) and the food supply. Furthermore, for the interrelationships between machine learning and food security, the literature highlights the relevance of platforms and methods, such as, for example, Google Earth Engine and Random Forest. These and other approaches have been considered to predict crop yield (wheat, barley, rice, maize and soybean), abiotic stress, field biomass and crop mapping with high accuracy (R2 ≈ 0.99 and RMSE ≈ 1%).

Funder

FCT-Foundation for Science and Technology

Enovo company

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3