Suppression of OCT-1 in Metastatic Breast Cancer Cells Reduces Tumor Metastatic Potential, Hypoxia Resistance, and Drug Resistance

Author:

Stepchenko Alexander G.,Bulavkina Elizaveta V.,Portseva Tatiana N.,Georgieva Sofia G.,Pankratova Elizaveta V.

Abstract

OCT-1/POU2F1 is a ubiquitously expressed transcription factor. Its expression starts at the earliest stage of embryonic development. OCT-1 controls genes involved in the regulation of differentiation, proliferation, cell metabolism, and aging. High levels of OCT-1 transcription factor in tumor cells correlate with tumor malignancy and resistance to antitumor therapy. Here, we report that suppression of OCT-1 in breast cancer cells reduces their metastatic potential and drug resistance. OCT-1 knockdown in the MDA-MB231 breast cancer cells leads to a fivefold decrease (p < 0.01) in cell migration rates in the Boyden chamber. A decrease in the transcription levels of human invasion signature (HIS) genes (ARHGDIB, CAPZA2, PHACTR2, CDC42, XRCC5, and CAV1) has been also demonstrated by real-time PCR, with high expression of these genes being a hallmark of actively metastasizing breast cancer cells. Transcriptional activity of ATF6 response elements is significantly reduced in the cell lines with decreased OCT-1 expression, which results in lower levels of adaptive EPR stress response. OCT-1 knockdown more than two times increases the MDA-MB231 cell death rate in hypoxia and significantly increases the doxorubicin or docetaxel-treated MDA-MB231 cell death rate. Our findings indicate that OCT-1 may be an important therapeutic target and its selective inhibition may have significant therapeutic effects and may improve prognosis in breast cancer patients.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulation of protein prenylation;Biomedicine & Pharmacotherapy;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3