Non-Destructive Identification of Naturally Aged Alfalfa Seeds via Multispectral Imaging Analysis

Author:

Wang Xuemeng,Zhang Han,Song Rui,He Xin,Mao PeishengORCID,Jia ShangangORCID

Abstract

Seed aging detection and viable seed prediction are of great significance in alfalfa seed production, but traditional methods are disposable and destructive. Therefore, the establishment of a rapid and non-destructive seed screening method is necessary in seed industry and research. In this study, we used multispectral imaging technology to collect morphological features and spectral traits of aging alfalfa seeds with different storage years. Then, we employed five multivariate analysis methods, i.e., principal component analysis (PCA), linear discrimination analysis (LDA), support vector machines (SVM), random forest (RF) and normalized canonical discriminant analysis (nCDA) to predict aged and viable seeds. The results revealed that the mean light reflectance was significantly different at 450~690 nm between non-aged and aged seeds. LDA model held high accuracy (99.8~100.0%) in distinguishing aged seeds from non-aged seeds, higher than those of SVM (87.4~99.3%) and RF (84.6~99.3%). Furthermore, dead seeds could be distinguished from the aged seeds, with accuracies of 69.7%, 72.0% and 97.6% in RF, SVM and LDA, respectively. The accuracy of nCDA in predicting the germination of aged seeds ranged from 75.0% to 100.0%. In summary, we described a nondestructive, rapid and high-throughput approach to screen aged seeds with various viabilities in alfalfa.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds

2. Physiological and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.);Neelesh;Am. J. Plant Physiol.,2011

3. Seed deterioration: Physiology, repair and assessment;McDonald;Seed Sci. Technol.,1999

4. Rapid and non-destructive detection method for water status and water distribution of rice seeds with different vigor;Song;Int. J. Agric. Biol. Eng.,2021

5. Viability Testing of Orchid Seed and the Promotion of Colouration and Germination

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3