Experimental Evaluation and Prediction Algorithm Suggestion for Determining SOC of Lithium Polymer Battery in a Parallel Hybrid Electric Vehicle

Author:

Cho Insu,Bae Jongwon,Park Junha,Lee Jinwook

Abstract

The necessity of hybrid vehicles and electric vehicles is widely known for reasons such as fossil fuel depletion, climate change, emission norms mandated by regulations, and so on. Expansion of the hybrid vehicle market is a realistic way to respond to fuel efficiency regulations. Hybrid electric vehicles are continuously challenged to meet cross-attribute performance while minimizing energy usage and component cost in a highly competitive automotive market. Current optimization strategy for a parallel hybrid requires much computational time and relies heavily on the drive cycle to accurately represent driving conditions in the future. With increasing application of the lithium-ion battery technology in the automotive industry, development processes and validation methods for the battery management system (BMS) have attracted attention. The purpose of this study is to propose an algorithm to analyze charging characteristics and improve accuracy for determining state of charge (SOC), the equivalent of a fuel gauge for the battery pack, during the regenerative braking period of a TMED type parallel hybrid electric vehicle.

Funder

Republic of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3