Analyzing the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel Spray Nozzles by Means of Lagrangian-Coherent Structures (2D)

Author:

Dauch ORCID,Ates ORCID,Rapp ORCID,Keller ,Chaussonnet ORCID,Kaden ,Okraschevski ,Koch ,Dachsbacher ,Bauer

Abstract

Predictions of the primary breakup of fuel in realistic fuel spray nozzles for aero-enginecombustors by means of the SPH method are presented. Based on simulations in 2D, novel insightsinto the fundamental effects of primary breakup are established by analyzing the dynamics ofLagrangian-coherent structures (LCSs). An in-house visualization and data exploration platformis used in order to retrieve fields of the finite-time Lyapunov exponent (FTLE) derived from theSPH predictions aiming at the identification of time resolved LCSs. The main focus of this paperis demonstrating the suitability of FTLE fields to capture and visualize the interaction between thegas and the fuel flow leading to liquid disintegration. Aiming for a convenient illustration at a highspatial resolution, the analysis is presented based on 2D datasets. However, the method and theconclusions can analoguosly be transferred to 3D. The FTLE fields of modified nozzle geometriesare compared in order to highlight the influence of the nozzle geometry on primary breakup, whichis a novel and unique approach for this industrial application. Modifications of the geometry areproposed which are capable of suppressing the formation of certain LCSs, leading to less fluctuationof the fuel flow emerging from the spray nozzle.

Funder

KIT Publikationsfonds

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3