Hybrid Virtual Commissioning of a Robotic Manipulator with Machine Vision Using a Single Controller

Author:

Noga MarekORCID,Juhás MartinORCID,Gulan MartinORCID

Abstract

Digital twin (DT) is an emerging key technology that enables sophisticated interaction between physical objects and their virtual replicas, with applications in almost all engineering fields. Although it has recently gained significant attraction in both industry and academia, so far it has no unanimously adopted and established definition. One may therefore come across many definitions of what DT is and how to create it. DT can be designed for an existing process and help us to improve it. Another possible approach is to create the DT for a brand new device. In this case, it can reveal how the system would behave in given conditions or when controlled. One of purposes of a DT is to support the commissioning of devices. So far, recognized and used techniques to make the commissioning more effective are virtual commissioning and hybrid commissioning. In this article, we present a concept of hybrid virtual commissioning. This concept aims to point out the possibility to use real devices already at the stage of virtual commissioning. It is introduced in a practical case study of a robotic manipulator with machine vision controlled with a programmable logic controller in a pick-and-place application. This study presents the benefits that stem from the proposed approach and also details when it is convenient to use it.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Effective Virtual Commissioning: Guiding Principles for Seamless System Integration;Journal of Manufacturing and Materials Processing;2024-08-01

2. Design of an Automated Welding System for Aluminum Alloy Core Components Based on Industrial Robots;Proceedings of the 2024 3rd International Symposium on Control Engineering and Robotics;2024-05-24

3. The Comparison of Machine Vision Approaches for Standard Industrial Solutions;2024 25th International Carpathian Control Conference (ICCC);2024-05-22

4. Agile digital machine development;Computers in Industry;2024-02

5. Virtual Prototyping and Commissioning of Manufacturing Cycles in Robotic Cells;Lecture Notes in Mechanical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3