Deep Reinforcement Learning Based Optical and Acoustic Dual Channel Multiple Access in Heterogeneous Underwater Sensor Networks

Author:

Liu Enhong,He RongxiORCID,Chen Xiaojing,Yu Cunqian

Abstract

In this paper, we investigate how to efficiently utilize channel bandwidth in heterogeneous hybrid optical and acoustic underwater sensor networks, where sensor nodes adopt different Media Access Control (MAC) protocols to transmit data packets to a common relay node on optical or acoustic channels. We propose a new MAC protocol based on deep reinforcement learning (DRL), referred to as optical and acoustic dual-channel deep-reinforcement learning multiple access (OA-DLMA), in which the sensor nodes utilizing the OA-DLMA protocol are called agents, and the remainder are non-agents. The agents can learn the transmission patterns of coexisting non-agents and find an optimal channel access strategy without any prior information. Moreover, in order to further enhance network performance, we develop a differentiated reward policy that rewards specific actions over optical and acoustic channels differently, with priority compensation being given to the optical channel to achieve greater data transmission. Furthermore, we have derived the optimal short-term sum throughput and channel utilization analytically and conducted extensive simulations to evaluate the OA-DLMA protocol. Simulation results show that our protocol performs with near-optimal performance and significantly outperforms other existing protocols in terms of short-term sum throughput and channel utilization.

Funder

National Natural Science Foundation of China

Dalian Science and Technology Innovation Fund

Science General Foundation of Chinese Postdoctoral

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3