A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna

Author:

Yang JianminORCID,Qiao Gang,Hu Qing,Zhang Jiarong,Du Guangbin

Abstract

Medium access control (MAC) protocol is an important link for achieving networks function in any wireless networks; an efficient and reliable MAC protocol is crucial for an effective underwater acoustic sensor networks (UASNs). Significant differences between UASNs and terrestrial sensor networks (TSNs) render the traditional MAC protocols applied on land inapplicable underwater. Existing MAC protocols for UASNs use the omnidirectional antenna, which wastes energy, restricts the network’s coverage range, and brings about unnecessary interferences in neighbor nodes. This paper proposes a dual channel MAC protocol for UASNs based on directional antenna (DADC-MAC), which increases the network coverage range, efficiently utilizes space, and reduces node interference compared to the omnidirectional antenna. The DADC-MAC protocol divides the channel into a data transmission channel and busy prompt message channel; the node uses the former to transmit the control frame and DATA package while the sending node and receiving node use the latter channel to inform the neighbor nodes of on-going communications to prevent DATA package collision. A neighbor discovery mechanism and directional network allocation vector are applied to resolve hidden terminal and deafness problems. Simulation results show that the DADC-MAC protocol could improve network throughput and reduce end-to-end delay, is efficient, performs well, and is well suited to both symmetrical and asymmetrical UASNs topology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3