Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach

Author:

Manian VidyaORCID,Alfaro-Mejía EstefaníaORCID,Tokars Roger P.

Abstract

Hyperspectral remote sensing has tremendous potential for monitoring land cover and water bodies from the rich spatial and spectral information contained in the images. It is a time and resource consuming task to obtain groundtruth data for these images by field sampling. A semi-supervised method for labeling and classification of hyperspectral images is presented. The unsupervised stage consists of image enhancement by feature extraction, followed by clustering for labeling and generating the groundtruth image. The supervised stage for classification consists of a preprocessing stage involving normalization, computation of principal components, and feature extraction. An ensemble of machine learning models takes the extracted features and groundtruth data from the unsupervised stage as input and a decision block then combines the output of the machines to label the image based on majority voting. The ensemble of machine learning methods includes support vector machines, gradient boosting, Gaussian classifier, and linear perceptron. Overall, the gradient boosting method gives the best performance for supervised classification of hyperspectral images. The presented ensemble method is useful for generating labeled data for hyperspectral images that do not have groundtruth information. It gives an overall accuracy of 93.74% for the Jasper hyperspectral image, 100% accuracy for the HSI2 Lake Erie images, and 99.92% for the classification of cyanobacteria or harmful algal blooms and surface scum. The method distinguishes well between blue green algae and surface scum. The full pipeline ensemble method for classifying Lake Erie images in a cloud server runs 24 times faster than a workstation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Linear and Nonlinear Unmixing in Hyperspectral Imaging;Dobigeon,2016

2. Supervised, Unsupervised, and Semisupervised Classification Methods for Hyperspectral Image Classification—A Review;Sabale;Int. J. Sci. Res.,2014

3. Hyperspectral Band Selection: A Review

4. Hyperspectral Unmixing: Groundtruth Labeling, Datasets, Benchmark Performances and Survey;Zhu;arXiv,2017

5. Spatial Low-Rank Tensor Factorization and Unmixing of Hyperspectral Images

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3