Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition

Author:

Javed Abdul RehmanORCID,Sarwar Muhammad UsmanORCID,Khan Suleman,Iwendi CelestineORCID,Mittal MohitORCID,Kumar Neeraj

Abstract

Recognizing human physical activities from streaming smartphone sensor readings is essential for the successful realization of a smart environment. Physical activity recognition is one of the active research topics to provide users the adaptive services using smart devices. Existing physical activity recognition methods lack in providing fast and accurate recognition of activities. This paper proposes an approach to recognize physical activities using only2-axes of the smartphone accelerometer sensor. It also investigates the effectiveness and contribution of each axis of the accelerometer in the recognition of physical activities. To implement our approach, data of daily life activities are collected labeled using the accelerometer from 12 participants. Furthermore, three machine learning classifiers are implemented to train the model on the collected dataset and in predicting the activities. Our proposed approach provides more promising results compared to the existing techniques and presents a strong rationale behind the effectiveness and contribution of each axis of an accelerometer for activity recognition. To ensure the reliability of the model, we evaluate the proposed approach and observations on standard publicly available dataset WISDM also and provide a comparative analysis with state-of-the-art studies. The proposed approach achieved 93% weighted accuracy with Multilayer Perceptron (MLP) classifier, which is almost 13% higher than the existing methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3