Activity recognition using cell phone accelerometers

Author:

Kwapisz Jennifer R.1,Weiss Gary M.1,Moore Samuel A.1

Affiliation:

1. Fordham University, Bronx, NY

Abstract

Mobile devices are becoming increasingly sophisticated and the latest generation of smart cell phones now incorporates many diverse and powerful sensors. These sensors include GPS sensors, vision sensors (i.e., cameras), audio sensors (i.e., microphones), light sensors, temperature sensors, direction sensors (i.e., magnetic compasses), and acceleration sensors (i.e., accelerometers). The availability of these sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data mining applications. In this paper we describe and evaluate a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity a user is performing. To implement our system we collected labeled accelerometer data from twenty-nine users as they performed daily activities such as walking, jogging, climbing stairs, sitting, and standing, and then aggregated this time series data into examples that summarize the user activity over 10- second intervals. We then used the resulting training data to induce a predictive model for activity recognition. This work is significant because the activity recognition model permits us to gain useful knowledge about the habits of millions of users passively---just by having them carry cell phones in their pockets. Our work has a wide range of applications, including automatic customization of the mobile device's behavior based upon a user's activity (e.g., sending calls directly to voicemail if a user is jogging) and generating a daily/weekly activity profile to determine if a user (perhaps an obese child) is performing a healthy amount of exercise.

Publisher

Association for Computing Machinery (ACM)

Reference28 articles.

1. Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones

2. Apple iPhone and Apple iPod Touch. 2009. Apple Inc. www.apple.com. Apple iPhone and Apple iPod Touch. 2009. Apple Inc. www.apple.com.

3. Activity Recognition from User-Annotated Acceleration Data

4. Activity Recognition from Accelerometer Data on a Mobile Phone

5. Cho Y. Nam Y. Choi Y-J. and Cho W-D. 2008. Smart-Buckle: human activity recognition using a 3-axis accelerometer and a wearable camera. In HealthNet. 10.1145/1515747.1515757 Cho Y. Nam Y. Choi Y-J. and Cho W-D. 2008. Smart-Buckle: human activity recognition using a 3-axis accelerometer and a wearable camera. In HealthNet. 10.1145/1515747.1515757

Cited by 1358 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3